科研帝上线啦!115万本专业的英文电子书全部免费下载!

科研帝

 找回密码
 立即注册

手机号码,快捷登录

金币不够用?来这充值VIP学者,无限量下载
查看: 1336|回复: 1

The Conference on L-functions: Fukuoka, Japan, 18-23 February 2006-[2006]-[djvu]-[Lin Weng, Masanobu Kaneko]

    [复制链接]
  • TA的每日心情
    开心
    2018-10-7 11:51
  • 签到天数: 68 天

    [LV.6]常住居民II

    23

    主题

    113

    帖子

    229

    积分

    管理员

    Rank: 9Rank: 9Rank: 9

    金币
    1506
    关注领域
    物理学
    QQ
    发表于 2017-11-20 17:05:52 | 显示全部楼层 |阅读模式
    提示:本书回复后可见下载链接(点击链接后等待30秒内会自动启动下载),普通用户回复扣5金币,VIP用户免费下载。还不是VIP?点击这里加入VIP→


    书籍信息:
    标题: The Conference on L-functions: Fukuoka, Japan, 18-23 February 2006
    语言: English
    格式: djvu
    大小: 1.9M
    页数: 383
    年份: 2006
    作者: Lin Weng, Masanobu Kaneko
    出版社: World Scientific Publishing Company

    简介

    This invaluable volume collects papers written by many of the world's top experts on L-functions. It not only covers a wide range of topics from algebraic and analytic number theories, automorphic forms, to geometry and mathematical physics, but also treats the theory as a whole. The contributions reflect the latest, most advanced and most important aspects of L-functions. In particular, it contains Hida's lecture notes at the conference and at the Eigen variety semester in Harvard University and Weng's detailed account of his works on high rank zeta functions and non-abelian L-functions.


    目录
    Contents......Page 10
    Preface......Page 6
    List of Participants......Page 8
    Quantum Maass Forms......Page 12
    1 Quantum Maass forms associated to Maass cusp forms and Eisenstein series......Page 13
    2 Quantum Maass forms associated to invariant eigenfunctions......Page 20
    References......Page 26
    Introduction......Page 28
    1 Lecture 1: Galois deformation and L-invariant......Page 35
    2 Lecture 2: Elliptic curves with multiplicative reduction......Page 42
    3 Lecture 3: L-invariants of CM fields......Page 48
    4 Appendix: Differential and adjoint square Selmer group......Page 55
    References......Page 61
    Siegel Modular Forms of Weight Three and Conjectural Correspondence of Shimura Type and Langlands Type......Page 66
    1 Definition of Siegel modular forms......Page 67
    2 Conjectures on dimensions of weight 3......Page 68
    3 Conjecture on Eichler type correspondence......Page 71
    4 Geometric interpretation......Page 75
    5 Conjecture on Shimura type correspondence......Page 76
    References......Page 78
    0 Introduction......Page 82
    1 An arithmetic formula for Fourier coefficients......Page 84
    2 Applications to convolutions......Page 89
    References......Page 96
    On an Extension of the Derivation Relation for Multiple Zeta Values......Page 100
    References......Page 105
    1 Symmetric fourth......Page 106
    2 Symmetric mth powers......Page 109
    3 First occurences of poles of symmetric power L-functions......Page 114
    4 Descent to cuspidal representations on classical groups......Page 116
    5 Remark on the images of functorial lift......Page 119
    References......Page 122
    0 Introduction......Page 126
    1 Zeta functions of root systems......Page 129
    2 Structural background of functional relations......Page 132
    3 Functional relations for S3(s; A3)......Page 136
    References......Page 149
    1 Automorphic forms......Page 152
    2 Sum formulas......Page 155
    3 The inversion problem......Page 158
    4 Proof (1)......Page 160
    5 Proof (2)......Page 165
    6 Concluding remarks......Page 170
    References......Page 172
    1 The Selberg class......Page 176
    2 The Lindelof class......Page 178
    References......Page 184
    0 Introduction......Page 186
    1 The idea of the proof......Page 188
    2 The frame of the proof......Page 190
    3 Proof of Theorem 1......Page 193
    4 Proof of Lemma 1......Page 203
    5 Proof of Lemma 5......Page 206
    References......Page 209
    0 Introduction......Page 212
    1 Setting the stage......Page 216
    2 Elliptic curves associated with J2(n)......Page 218
    3 Geometric interpretation of the differential equation for W2(T)......Page 220
    4 Modular properties......Page 222
    5 Closing remarks......Page 225
    References......Page 228
    A Geometric Approach to L-Functions......Page 230
    1 High Rank Zetas for Number Fields......Page 234
    2 Non-Abelian L-Functions......Page 265
    3 Geometric and Analytic Truncations......Page 275
    4 Rankin-Selberg & Zagier Method......Page 307
    5 High Rank Zetas and Eisenstein Series......Page 326
    6 Stability and Distance to Cusps......Page 332
    7 Explicit Formulas for Rank Two Zetas......Page 342
    8 Zeros of Rank Two Zetas......Page 347
    9 A Rank Three Zeta and Its Zeros......Page 353
    REFERENCES......Page 376

    电子书下载地址回复可见:
    游客,如果您要查看本帖隐藏内容请回复

    每天进步一点点
    回复

    使用道具 举报

  • TA的每日心情
    开心
    前天 15:17
  • 签到天数: 69 天

    [LV.6]常住居民II

    1

    主题

    182

    帖子

    184

    积分

    初中生

    Rank: 2

    金币
    56
    发表于 2019-8-13 11:33:57 | 显示全部楼层
    看看看看看看看看看
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 立即注册

    本版积分规则

    关闭

    站长推荐上一条 /1 下一条

    QQ|Archiver|手机版|小黑屋|科研帝   

    GMT+8, 2019-12-16 06:58 , Processed in 0.102093 second(s), 28 queries .

    Powered by Discuz! X3.4

    © 2001-2017 Comsenz Inc.

    快速回复 返回顶部 返回列表